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1.0 Abstract 
 

The cloud fields modeled by meso-scale models play an important role in the application 
of predicting local air quality. The cloud fields can strongly affect the formation, transportation, 
as well as deposition of many gaseous and particulate species, through regulating radiative 
transfer, influencing aqueous chemistry, and altering precipitation. However, it is very 
challenging to accurate predict the microphysical and macrophysical properties of cloud fields. 

In this proposal, we plan to run WRF model with Texas in the center of model domain. 
Modeled cloud fields are feed into Cloud Feedback Intercomparison Project (CFMIP) 
Observation Simulator Package (COSP), so that modeled cloud can be directly compared to 
satellite observations. The objective is to select optimal combination of initiation state (the 
selection of reanalysis data) and physical packages (namely microphysics, cumulus 
parameterization, planetary boundary layer scheme) for the cloud simulation. 

With modeled and observed cloud fields, we train a GAN (Generative Adversarial 
Network), a type of deep learning technique. We will perform super-resolution and image-to-
image translation applications to modeled cloud microphysical fields over Texas, so that they 
can gain much detailed fine features, and become more accurate compared to observed cloud 
fields. Improved cloud fields will undoubtedly improve Texas air quality prediction. 

 
2.0 Background 
 

This proposal targets the research area as listed in Texas Air Quality Research Program 
(AQRP) guideline: “Meteorological Inputs for Modeling” with the goal “to support scientific 
research related to Texas air quality, in areas of …meteorology and air quality modeling.” 

Cloud fields play an important role in regulating the formation, transportation, and 
lifetime of gas and particulate pollutants [e.g. Liang and Jacob, 1997; Gurciullo and Pandis, 
1997; Fan et al., 2004]. The radiation field altered by cloud controls the photolysis reaction 
associated with ozone formation [Faust, 1994].  Photolysis rate is dependent on many factors 
that are capable of influencing solar actinic flux. Many previous studies have shown that the 
vertical distribution of aerosol and cloud, and their optical properties can have significant 
impacts on photolysis rate [E.g. Liao et al., 1999; Lefer et al., 2003; Tie et al., 2003; 2005; Liu et 
al., 2006]. In general, actinic flux and thereby photolysis rates are reduced below aerosol or 
cloud layer due to their extinction. On the other hand, over bright cloud the strong cloud 
reflection can increase the photolysis rate. The impacts on photolysis rate can in turn influences 
the photochemistry of ozone. Using a photochemical box model driven by airborne 
measurement from the TRACE-P mission, Lefer et al. [2003] showed that during the TRACE-P 
mission the net photochemical effect of clouds and aerosols was a large decrease in 
photochemical O3 production in the boundary. 

The interactions between particulate matters suspended in the air – or atmospheric 
aerosols with cloud fields are complicated and extremely important for climate as well as air 
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quality application [Rosenfeld, et al., 2014, Fan et al., 2016; Seinfeld et al., 2016]. The cloud 
droplets must be nucleated from aerosol particles, which are referred as cloud condensation 
nuclei (CCN) if activated. Heavy pollution condition in metropolitan areas can enhance cloud 
droplet number concentration (CDNC). For fixed amount of liquid water mass, higher CDNC 
leads to smaller cloud droplets, which can reduce precipitation efficiency. As the precipitation 
falling, the raindrops can wash off the aerosol particles below the clouds. Aerosol embedding 
inside cloud droplets and wet removal of aerosols by raindrops, referred to as in-cloud and 
below cloud scavenging, represent important sink terms of atmospheric aerosols. Therefore, to 
a large extent, the atmospheric aerosols can control cloud microphysical and macrophysical 
properties, and vice versa.  

Aqueous chemistry is another reason that cloud is important for air quality application. 
For example, SO2 mass can be efficiently transferred to sulfate aerosols via cloud processing 
[Wine et al., 1989; Feingold and Kreidenweis, 2002]. To sum up the aforementioned discussion, 
as an input to the air quality models, accurate representation of cloud fields, including their 
macro and microphysical properties by model is essential for the air quality prediction 
application.  

Modeled clouds are often too bright (high cloud brightness) and too few (low cloud 
fraction) compared to satellite observation [e.g. Otkin et al., 2008; Thompson et al., 2016]; 
however, the “general pictures” of cloud fields can be well captured by the meso-scale weather 
prediction models, for instance, convective frontal clouds associated with cyclonic-frontal 
system; or large decks of cumulus clouds over a large area when atmosphere is stable. For 
example, WRF model is widely used in simulating the meteorology and cloud fields that are 
essential for air quality prediction. WRF model parameterizations has been shown to lead to 
accurate simulations of southeast Texas mesoscale circulations [Ngan et al., 2013]. This 
indicates that over a relatively large area, the characteristic of modeled clouds is reasonable 
statistically and can be “adjusted” to match the observations. The direct comparison between 
modeled and observed cloud fields are like “apple-to-orange” comparison, because of different 
sampling rate. To facilitate the so-called “apple-to-apple” comparison, we must firstly use the 
tool called COSP [Bodas-Salcedo et al., 2011; Zhang et al., 2019].  

As a new technique, the machine learning and deep learning (ML/DL) tools have not 
been widely used in geoscience, but have shown great potentials [Reichstein et al., 2019]. One 
of the advantages of ML/DL is that is data-driven – in other words, the more data we feed into 
the tools, the more accurate the results will be. With satellite observation, we have large 
amount of satellite data available for training the ML/DL tools. In this proposed work, we will 
use a ML/DL tool called Generative Adversarial Network (GAN) to “adjust” modeled cloud fields 
[Goodfellow et al., 2014].    

3.0 Objectives 

The two objectives of this proposal are: 
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(1) To conduct a series of WRF simulations as well COSP analysis to find a optimal 
combination of physics suite and reanalysis input for modeling clouds fields over 
Texas; 

(2)  To train a GAN model over the time series of modeled cloud fields so that the 
macro- and microphysical properties of modeled clouds are more accurate 
compared to observations.    

 
4.0 Task Descriptions 
 
Task 4.1. find optimal WRF model configuration for Texas 
 

In this proposed work, we plan to use 
Weather Research and Forecasting model 
(WRF) [Skamarock & Klemp, 2008] to 
generate cloud fields, that can be used in 
air quality forecasting application. The 
domain will be set up with Texas in the 
center. The resolution can be flexible, 
varies according to the need of air quality 
prediction. Figure 1 shows an example of 
simulation domain, with 256 (west-east) 
by 256 (south-north) grids and 32 vertical 
levels. The horizontal resolution is 8 km.  
In the latest version of WRF model (after 
V3.9), a suite of physical packages is 
specifically recommended for simulations 
over CONUS (CONtinental U. S.). Namely, 
they are new Thompson microphysics 
scheme [Thompson et al., 2008], 
modified Tiedtke scheme for cumulus 

parameterization [Tiedtke, 1989]; Mellor-Yamada-Janjić TKE scheme for boundary layer scheme 
(PBL) [Janjić, 1994]; RRTMG radiation scheme for both shortwave and longwave radiation 
calculation [Iacono et al., 2008]; and unified Noah land-surface model [Koren et al., 1999]. For 
CONUS application, the initial and boundary conditions (IC and BC) of model is often driven by 
6‐hourly 12‐km North American Mesoscale Analysis [e.g. Li et al., 2008].  
However, this physics suite as well as reanalysis input may not be optimal for Texas application 
and/or cloud field simulations. Based on our previous research experience [Lu and Sokolik, 
2013; Lu and Sokolik, 2017; Lu et al., 2018], three physics packages, namely microphysical 
scheme, cumulus parameterization, and PBL scheme, are most important physics packages that 
affect cloud simulation. The selection of re-analysis data also strongly affects large-scale 
dynamic and resulting cloud deck patterns. Therefore, here we propose to run several groups of 
one year of simulations with different combination of physics packages and reanalysis datasets, 

Figure 1 Potential domain setup with Texas in 
center 
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the candidate of which are shown in Table 1. (To select which year depends on the availability 
of satellite products).  
 

Table 1 Physics packages and reanalysis-data used for WRF simulation 
Physical parameterization scheme Acronym Reference 
Cumulus convective Tiedtke Tiedtke Tiedtke [1989] 
 Grell-Fretas GF Grell and Freitas 

[2014 
 Multiscale Kain-Fritsch msKF Zheng et al. [2016] 
Microphysics 1.5-moment 6-class Thompson Thompson Thompson et al. 

[2008] 
 2-moment 6 class Morrison Morrions Morrions et al. 

[2009] 
PBL Mellor-Yamada-Janjic scheme MYJ Janjić [1994] 
 Yonsei University scheme YSU Hong et al. [2006] 
Reanalysis input North American Mesoscale 

Analysis 
NAMA Rogers et al. [2009]  

 NCEP final (FNL)  FNL NCEP [2000] 
 
Totally 3×2×2×2=24 groups of simulations will be performed and compared to satellite 
observations (more details of evaluation discussed in Section 2.2). After optimal combination of 
physics packages is selected, we use this physics suite with reanalysis data and conduct multiple 
years of simulation with the same domain setup. The results will be used in training a 
generative adversarial network (GAN).  
Modeled cloud fields that we need from simulations are cloud water path (sum of liquid and 
ice water path, CWP, in kg m-2); cloud fraction (CF, in %); cloud top height (CTH, in m) and 
cloud optical thickness (COT, unitless). These four cloud fields will be compared against 
satellite observations.  
 
Responsible organization: TAMU team 
Expected milestones, outcomes, and deliverables: 1) select the optimal combination of 
physical packages and reanalysis inputs for cloud simulation and 2) conduct long-term 
simulation with this optimal configuration. 
 
Task 4.2 synergize COSP and satellite observations with WRF outputs 
 

Direct comparison between model outputs with satellite observations is challenging 
because of different spatiotemporal sampling of clouds; however, with the aid of COSP, the 
comparison becomes possible [Bodas-Salcedo et al., 2011; Zhang et al., 2019]. One big strength 
of COSP is to facilitate “apple-to-apple comparison of observed cloud data and model-simulated 
clouds” as shown in the example in Figure 2.   
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Figure 2 Upper panel: example of COSP: modeled cloud fields are converted to pseudo-satellite 
observations, then compared against actual satellite observations [modified from COSP 
webpage on https://climatedataguide.ucar.edu/]; Lower panel: flow chart of COSP, adopted 
from Bodas-Salcedo [2011] 

Modeled vertical profiles of temperature, humidity, hydrometeor mixing ratios, cloud 
optical thickness and emissivity (a function of cloud water content and particle size), as well 
surface temperature at satellite overpassing time are feed into COSP. Firstly, the vertical 
profiles of model grids are broken into sub-columns to commensurate satellite pixels. Next, 
vertical profiles of sub-columns are passed to several instrument simulators, which apply 
models to simulate the radiance signals received by each sensor. Finally, statistical modules 
gather output from all instrument simulators, and build pseudo-cloud fields that can be directly 
compared to observations. Out of many products retrieved from several instruments (e.g. as 
shown in Figure 2 or Table 1 in Bodas-Salcedo et al. [2011]), we select total COT retrieved from 
MODIS (Moderate Resolution Imaging Spectroradiometer) [Levy et al., 2009] from both Aqua 
and Terra satellites and CTH from CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder 
Satellite Observations) [Winker et al., 2010] as criteria when evaluating the performance of 
different WRF simulations discussed in Section 2.1. This is because not many assumptions are 
made in the retrievals of COT and CTH. In addition, COT and CTH directly impact the radiation 
fields that controls photolysis reaction associated with ozone formation. Potentially, the 
successor of MODIS, VIIRS (Visible Infrared Imaging Radiometer Suite) can provide the same 
cloud products as MODIS, which will be used in our study too.  

Usually for each day, MODIS will generate two snapshots (granules) of 2D cloud fields 
over Texas (10:30 and 13:30 local time), while CALIPSO observation will generate two swaths 
(cross-sections) of cloud profiles (daytime and night time) over Texas. Compared to these four 
“pictures”, we rank the performance of all 24 groups of WRF simulations each day. The goal is 
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to find the WRF simulation that achieve the highest score for a relative long period (one year or 
one season). The physics packages and reanalysis data used in this WRF simulation will be 
considered as the optimal configuration for this period (one year or one specific season). 

Responsible organization: TAMU team 
Expected milestones, outcomes, and deliverables: 1) download long-term satellite 
observations; 2) create COSP outputs; 3) perform the evaluation of WRF model simulation. 
 
Task 4.3 train a GAN to improve cloud simulation over Texas 
 

Generative adversarial networks (GANs) are a type of deep learning technique 
[Goodfellow et al., 2014] that is commonly used in many areas (e.g. super-resolution 
application that can enhance the details of images). A GAN contains two neutral networks (NN), 
a generator and a discriminator. The purpose of the generator is to generate fake samples of 
data/image and tries to “fool” the discriminator. The discriminator on the other hand tries to 
distinguish the real and fake samples — in other words, two NNs try to compete each other and 
play zero-sum game. The GANs are formulated as a mini-max game, where the discriminator is 
trying to minimize its reward V: 𝑚𝑖𝑛ீ𝑚𝑎𝑥஽V(D, G) = 𝐸௫~௣೏ೌ೟ೌ[log 𝐷(𝑥)] + 𝐸௭~௣೥[log(1 − 𝐷൫𝐺(𝑧)൯)] 
,where x is satellite observed images of CWP, CF, or CTH, and COT, z is COSP simulation outputs 
of CWP, CF, CTH, and COT.  

We consider the 2D cloud properties (CWP, CF, and COT) as different layers of one 
“image” and apply only one GAN model training. We will train one GAN model for Calipso CTH 
separately using the similar approach. To prepare input data and target data for GAN training, 
we run multiple years of WRF simulations with the optimal configuration, feed vertical profiles 
of variables into COSP, which generate pseudo-observed CF, CWP, and COT, as input data for 
the generator to generate fake cloud fields. Target or real fields is simply the corresponding 
observed MODIS CF, CWP, and COT fields. 

Figure 3 shows the workflow of GAN training, which contains two parts. In the first part, 
only discriminator is trained as the network is only forward propagated. The discriminator is 
trained on target data (observed cloud fields) for n epochs and see if it can correctly predict 
them as real. Also, in this part, the discriminator is also trained on the fake generated cloud 
fields from the generator and see if it can correctly predict them as fake. In the second part, the 
generator is trained while the discriminator is idle. After the discriminator is trained by the 
generated fake cloud fields of the generator, we can get its predictions and use the results for 
training the generator and get better from the previous state to try and fool the discriminator. 
The above method is repeated for a few epochs and then manually check the fake cloud fields 
how it seems compared to target cloud fields. 

Figure 3 also shows the architecture of two deep NNs. The generator has this “encoder-
decoder” structure. The encoder part of the model is comprised of convolutional layers that use 
a 2×2 stride to downsample the input source “image” down to a bottleneck layer. The decoder 
part of the model reads the bottleneck output and uses transpose convolutional layers to 
upsample to the required output image size. Both encoder and decoder use ReLU activation 
function. The Adam optimizer will be used in training [Kingma & Ba, 2014].  



 

 10 

A well-trained GAN is expected to 1) adjust large-scale cloud distributions, especially over 
Texas; 2) generate the fine features associated with modeled cloud decks (CF); 3) improve the 
accuracy of modeled cloud so that COT, CWP, as well as CTH become much closer to the 
observations, in terms of magnitudes and location. With GAN-generated COT, CWP, CF, and 
CTH, we are also able to revise 3D field of clouds accordingly, for example, increase or decrease 
cloud water content proportionally to GAN-generated CWP; enhance or reduce cloud top 
height; revise cloud brightness by modifying cloud hydrometeor size based on GAN-generated 
COT. As discussed in abstract, improved cloud fields over Texas are expected to increase the 
accuracy of air quality prediction.  
 

 
Figure 3. workflow of GAN training and the architecture of generator 
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Responsible organization: TAMU team 
Expected milestones, outcomes, and deliverables: A well-trained GAN neutral network. 
 
 
Task 4.4. Project Reporting and Presentation 
 
As specified in Section 7.0 “Deliverables” of this Scope of Work, AQRP requires the regular and 
timely submission of monthly technical, monthly financial status and quarterly reports as well 
as an abstract at project initiation and, near the end of the project, submission of the draft final 
and final reports. Additionally, at least one member of the project team will attend and present 
at the AQRP data workshop. For each reporting deliverable, one report per project will be 
submitted (collaborators will not submit separate reports), with the exception of the Financial 
Status Reports (FSRs). The lead PI (or their designee) will electronically submit each report to 
both the AQRP and TCEQ liaisons and will follow the State of Texas accessibility requirements as 
set forth by the Texas State Department of Information Resources. The report templates and 
accessibility guidelines found on the AQRP website at http://aqrp.ceer.utexas.edu/ will be 
followed. **Draft copies of any planned presentations (such as at technical conferences) or 
manuscripts to be submitted for publication resulting from this project will be provided to 
both the AQRP and TCEQ liaisons per the Publication/Publicity Guidelines included in 
Attachment G of the subaward.** Finally, our team will prepare and submit our final project 
data and associated metadata to the AQRP archive. 
 
Deliverables: Abstract, monthly technical reports, monthly financial status reports, quarterly 
reports, draft final report, final report, attendance and presentation at AQRP data workshop, 
submissions of presentations and manuscripts, project data and associated metadata 
 
Schedule: The schedule for Task 4.4 Deliverables are shown in Section 7. 
 
5.0 Project Participants and Responsibilities 
 

• Dr. Zheng Lu and a graduate student are responsible for all the tasks. 
 
6.0 Timeline 
 
PI (Dr. Lu) and a graduate student majored in Atmospheric Science promise to deliver the 
following results:  
 
 09/

20 
10/
20 

11/
20 

12/
20 

01/
21 

02/
21 

03/
21 

04/
21 

05/
21 

06/
21 

07/
21 

08/
21 

1. Find optimal WRF 
model configuration  
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2. Synergize COSP with 
WRF outputs 

            

3. Train a GAN to 
improve cloud simulation  

            

4. Final report 
 

            

The proposed work will be done within one year, starting from Sept. 1, 2020. The task 1 and 
task 2 will be conducted in parallel. After we find the optimal configuration, we will conduct 
long-term simulation. We plan to spend six months performing GAN training and improving the 
cloud fields. 
 
 
7.0 Deliverables  
 
AQRP requires certain reports to be submitted on a timely basis and at regular intervals. A 
description of the specific reports to be submitted and their due dates are outlined below. One 
report per project will be submitted (collaborators will not submit separate reports), with the 
exception of the Financial Status Reports (FSRs). The lead PI will submit the reports, unless that 
responsibility is otherwise delegated with the approval of the Project Manager. All reports will 
be written in third person and will follow the State of Texas accessibility requirements as set 
forth by the Texas State Department of Information Resources. Report templates and 
accessibility guidelines found on the AQRP website at http://aqrp.ceer.utexas.edu/ will be 
followed.      
 
Abstract: At the beginning of the project, an Abstract will be submitted to the Project Manager 
for use on the AQRP website. The Abstract will provide a brief description of the planned 
project activities, and will be written for a non-technical audience. 
 
Abstract Due Date:  Friday, Aug 28, 2020 
 
Quarterly Reports: Each Quarterly Report will provide a summary of the project status for each 
reporting period. It will be submitted to the Project Manager as a Microsoft Word file. It will not 
exceed 2 pages and will be text only. No cover page is required. This document will be inserted 
into an AQRP compiled report to the TCEQ. 
 
Quarterly Report Due Dates: 
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Report Period Covered Due Date 

Quarterly Report #1 September, October, November, 2020 Friday, November 27, 2020 

Quarterly Report #2 December 2020, January February 2021 Friday, February 26, 2021 

Quarterly Report #3 March, April, May 2021 Friday, May 28, 2021 

Quarterly Report #4 June, July August 2021 Friday, Aug 27, 2021 

 
Monthly Technical Reports (MTRs): Technical Reports will be submitted monthly to the Project 
Manager and TCEQ Liaison in Microsoft Word format using the AQRP FY20-21 MTR Template 
found on the AQRP website. 
 
MTR Due Dates: 
 

Report Period Covered Due Date

Technical Report #1 September 1 - 30 2020 Thursday, September 10, 2020 

Technical Report #2 October 1 - 31, 2020 Friday, October 9, 2020 

Technical Report #3 November 1 - 30, 2020 Tuesday, November 10, 2020 

Technical Report #4 December 1 - 31, 2020 Thursday, December 10, 2020 

Technical Report #5 January 1 - 31, 2021 Friday, January 8, 2021 

Technical Report #6 February 1 - 28, 2021 Wednesday, February 10, 2021 

Technical Report #7 March 1 - 31, 2021 Wednesday, March 10, 2021 

Technical Report #8 April 1 - 30, 2021 Friday, April 9, 2021 

Technical Report #9 May 1 - 31, 2021 Monday, May 10, 2021 

Technical Report #10 June 1 - 30, 2021 Thursday, June 10, 2021 



 

 14 

Technical Report #11 July 1 - 31, 2021 Friday, July 9, 2021 

DUE TO PROJECT MANAGER 

 
 
Financial Status Reports (FSRs): Financial Status Reports will be submitted monthly to the 
AQRP Grant Manager (RoseAnna Goewey) by each institution on the project using the AQRP 20-
21 FSR Template found on the AQRP website. 
 
FSR Due Dates: 
 

Report Period Covered Due Date 

FSR #1 September 1 - 30 2020 Thursday, October 15, 2020 

FSR #2 October 1 - 31, 2020 Friday, November 13, 2020 

FSR #3 November 1 - 31, 2020 Tuesday, December 15, 2020 

FSR #4 December 1 - 31, 2020 Friday, January 15, 2021 

FSR #5 January 1 - 31, 2021 Monday, February 15, 2021 

FSR #6 February 1 - 28, 2021 Monday, March 15, 2021 

FSR #7 March 1 - 31, 2021 Thursday, April 15, 2021 

FSR #8 April 1 - 30, 2021 Friday, May 14, 2021 

FSR #9 May 1 - 31, 2021 Tuesday, June 15, 2021 

FSR #10 June 1 - 30, 2021 Thursday, July 15, 2021 

FSR #11 July 1 - 31, 2021 Friday, August 13, 2021 

FSR #12 August 1 - 31, 2021 Wednesday, September 14, 2021 

FSR #13 Final FSR Friday, October 15, 2021 

DUE TO GRANT MANAGER 
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Draft Final Report: A Draft Final Report will be submitted to the Project Manager and the TCEQ 
Liaison. It will include an Executive Summary. It will be written in third person and will follow 
the State of Texas accessibility requirements as set forth by the Texas State Department of 
Information Resources. It will also include a report of the QA findings. 
 
Draft Final Report Due Date:  Monday, August 2, 2021 
 
Final Report: A Final Report incorporating comments from the AQRP and TCEQ review of the 
Draft Final Report will be submitted to the Project Manager and the TCEQ Liaison. It will be 
written in third person and will follow the State of Texas accessibility requirements as set forth 
by the Texas State Department of Information Resources. 
 
Final Report Due Date:  Tuesday, August 31, 2021 
 
Project Data: All project data including but not limited to QA/QC measurement data, metadata, 
databases, modeling inputs and outputs, etc., will be submitted to the AQRP Project Manager 
within 30 days of project completion (September 20, 2021). The data will be submitted in a 
format that will allow AQRP or TCEQ or other outside parties to utilize the information. It will 
also include a report of the QA findings. 
 
AQRP Workshop: A representative from the project will present at the AQRP Workshop in the 
first half of August 2021. 
 
Presentations and Publications/Posters: All data and other information developed under this 
project which is included in published papers, symposia, presentations, press releases, 
websites and/or other publications shall be submitted to the AQRP Project Manager and the 
TCEQ Liaison per the Publication/Publicity Guidelines included in Attachment G of the 
Subaward. 
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